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INTRODUCTION 

The first thing one learns about sound in the ocean is that it fluctuates.   Such varia- 
bility is much more than merely conspicuous; it is quite general and ever present.   Thus, 
variability exists in all parameters of the sonar equation such as propagation loss, target 
strength, ambient noise and recognition differential, though each time due to rather differ- 
ent causes.   Fluctuations in the ocean are also relevant to understanding the performance 
of naval acoustic equipment in that they unmistakably, and sometimes drastically,  influence» 
such performance.   Typical is the observation that targets tend to be detected at ultra-long 
ranges during periods of signal surges and lost at short ranges during periods of signal 
fades.   To put it differently, the actual detection probability falls off more slowly in field 
exercises than would be expected in the absence of fluctuations. 

Of the many kinds of variability mentioned above, fluctuations in propagation loss have 
received a great deal of attention.   In consequence, a substantial amount of information both 
experimental and theoretical has been gathered concerning candidate mechanisms of trans- 
mission fluctuability.   It has thus become apparent that, under certain conditions at least, 
sound wave scattering off the temperature microstructure of the medium can account for 
most of the observed variability.   Hereafter, we shall refer to this mechanism and the 
attendant body of theory as the Kolmogorov, Chernov, and Tatarski (KCT) framework. 

In this paper we offer a straightforward generalization of the KCT results away from 
the transversal correlation restriction inherent therein.   The academic value of this work 
is limited; the tactical value thereof is, however, paramount in that for real life employ- 
ment of sonar detection the transversal correlation case is of vanishing measure. 

The observation fundamental to our work is that the ocean is usually in a state of tur- 
bulent motion.   Correspondingly, the values of the temperature at every point in the ocean 
undergo irregular fluctuations; the values of the temperature at different spatial point at 
the same instant in time also differ from one another in a random fashion.   What has been 
said applies as well to all other oceanographic quantities.   In particular, since the index of 
refraction of the ocean is a function of temperature and salinity, we can take the viewpoint 
that the refractive index field is random.   To become specific, we shall assume that the 
Kolmogorov theory of locally homogeneous and Isotropie turbulence(2) provides a sufficiently 
good description of the refractive index microstructure. 

To extract information concerning the randomness of an acoustic wave propagating 
through this turbulent and unbounded ocean, we make use of the wave equation to connect 
the statistical properties of the random medium to the implied statistical properties of 
wave parameters within the framework of a correlation theory.   We accomplish this only 
to first order in perturbation theory thus restricting the realm of validity of our results to 
high frequencies and small refractive index fluctuations. 
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The main output of this analysis is the structure functions of the logorithmic amplitude 
and phase fluctuations.   For conciseness, we have explicitly handled only the amplitude 
fluctuations, but the same treatment can be continued with no difficulty to include the phase 
fluctuations as well. 

We thus find that the correlation length of the logorithmic amplitude fluctuations is 
given by, 

'C4T   >°**<*0 

0 (G)   ~ < Mcorr 
, /xL « LQ 

4nL2 

,   9  < 0 <;   TT/2 
X sm  0 vo 

where 9 measures the angle between the observation plane and the wave front, X is the 
wave length, L the distance between the source and the receiver, L the outer scale of 
turbulence, and  0     is the solution of 

/XT    _   4TTL
'O 

cos   9       x sin  9 

We also find that, 

((logA/A0)
2)=     .31C2k7/6  L11'6 

(/XL « LQ) 

2 
where   C    measures the strength of the Kolmogorov "two-thirds" law for the refractive 

index fluctuations, k   stands for the wave number  2rr/x and where   A/AQ represents the 

amplitude of the perturbed wave normalized to the plane wave amplitude  AQ . 

The first three chapters are intended to familiarize the reader with the mathematical 
language of random fields extensively used herein, with the physical picture of turbulent 
flow, and with the corresponding microstructure of the refractive index field respectively. 
The wave equation is developed in chapter D.l, and the small wavelength modification of 
Rytov to the first order perturbation theory appears in D.2.   We solve the Rytov equation 
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# 
using the method of spectral expansions in chapter D.3.   Explicit evaluation of the solution 
for the Kolmogorov model is included in chapter D. 4.   The analysis concludes with a chap- 
ter on comparison with experimental data(3) gathered under conditions where the turbulence 
mechanism is expected to dominate. 

A.   RANDOM FUNCTIONS 

• A random function on T  is a family of random variables |?(t), ?(s),... Y 
corresponding to all elements (t, s, ...)   in the set  T . 

• We shall regard the random function   5(t)   as specified if for each 
subset   (t , t ,   ..., t )   in  T we are given the distribution function 

't^tj....,^ cvv—'V ■p{*(ti)<xi*--"«v<*>} •   (A_1) 

In most actual physical problems it is excessively complicated to measure these distribu- 
tion functions.   They are also too cumbersome to be used in practice.   It is, therefore, 
convenient to restrict oneself to the simplest numerical characteristics of the multidimen- 
sional distribution, the moments 

%,m2,...,mn(trV....tn)  -<?n>1(t1)   ?
m2(t2)   ...   |mn(tn)>    . (A-2) 

Here, 

<?   1(t1)   ?2(t2)   ...   ?n(tn)>s (A-3) 

CO 

_.*!    X2     •••XnndFt1,t2,...,tnCX1>X2>"-»V 

where the integration on the right-hand side is to be performed in the Stieltjes sense.   If 
the distribution   F  has a density, 

a\,t2,...,tn
(yv"-'V 

ft1,t2,...,tn
(xi'x2"--'xn) axiax2... axn 

(A"4) 

the moment reduces to the standard form: 

-3- 



Mm1,m2,...,mn
(tl't2'---'tn) = - (A-5) 

ml   m2 mn = J   dXldX2   ... d^ Xl   x2 '    ... ^ n fti,t2,...,tm(X1>X2v..,Xn). 

We shall further restrict ourselves by taking into account only those properties of a random 
function which are determined by its first and second moments, the mean value and the corre- 
lation function: 

m(t)=<5(t)>   5      B(t,s) = <?(t)?(s)>    . <A"6> 

• The random function  % (t) is called stationary if all the finite-dimensional 
distribution functions defining ? (t) are invariant under translations of the whole group 
of points   (t ,t , ...,t )   in  T, 

Fti+T t2+T,...,tn+T CXi.Xa.—V = Ft15t2,...,tn (X1,X2,...,Xn)     .     (A.7) 

If ^(t) is stationary, then obviously: 

m(t) = m    ;       B(t,s) =  B(t-s)     . (A-8) 

The physical content of the concept of stationarity is clear.   It means that ?(£) describes 
the time variation of a numerical characteristic   5 of an event such that none of the ob- 
served macroscopic factors influencing the occurrence of the event changes in time. 

• To determine the mean value  m(t)  and the correlation function   B(t, s)   of a 
random function %(t) we must first take a large number  N  of realizations of ^(t), written 
5      (t), 5'     (t),..., ?      (t) and then calculate the arithmetic mean of    ?(j) (t)    over  j 
for every value of t   , or the arithmetic mean of ^^'(t)5*'(s) for every pair of values 
t  and  s   .   However, in practice, observation of a random function and the subsequent 
processing of the data usually turn out to be quite complicated.   It would, therefore, be very 
desirable to be able to get along with as small a number of realization as possible.   Indeed, 
the practical value of the correlation theory of stationary random functions is to a consid- 
erable extent due to the fact that if   §(t)   is stationary, its mean value   m  and its corre- 
lation function  B(t)   can usually be calculated by using just one realization of ^(t) .   This 
is the content  of the ergodic theorem. 

More precisely, if  ?(t) is a stationary random function satisfying certain quite general 
conditions, then 
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<?(t)> = lim i dt§(t) (A-9) 
T-»» 

<5(t+T)5(t)> = lim   1 dt5(t+T)?(t) 
T-*«        0 

(A-10) 

where the integrals are defined as the limits of the corresponding approximating sums: 

N 

dts(t) = lim   |     Y    5(nJ) 
N-loo (A-ll) 

rr=l 

N 

dt 5(t+r)5(t) = lim   I     I    S(n{ + T)5(n5)     . (A-12) 

We notice, that in the statement of the ergodic theorem, the limit is taken to mean limit in 
the mean-square. 

•      A stationary random function can be represented in the form of a stochastic 
Fourier-Stieltjes integral, 

Kt) - J   eiat<J0(a)) (A-13) 

where stationarity requires: 

<d0(lB)d0*(\) >=   6(a)- X)W((i))da)dx    . (A-14) 
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Hence: 

B(t-s) = J e
i((ut-*s) < d0(  » )d0*(X)> <A-15> 

becomes, 

B(t-s) =  J du,elu)(t"s)W(u))      . (A-16) 

Obviously,  W( UJ) ^ 0 , and therefore the Fourier transform of a correlation function must 
be non-negative.   Khinchin showed(4) that the converse assertion is also true:  if the Fourier 
transform of B(t)   is non-negative, then there exists a stationary random function    ^(t) 
with B(t) as its correlation function.    W(o)) is called the spectral density function of   £(t) . 

•      In general, the random functions encountered in practical applications can very 
often be regarded to a high degree of accuracy as stationary.   However, the opposite can 
also occur.   The mean value of some oceanic or meteorological variable undergoes com- 
paratively slow and smooth changes, and hence they are random functions that cannot be 
regarded as stationary. 

In the case where   ?(t) represents a non-stationary random function, i.e., where 
< 5 (t)> changes in the course of time, we can consider instead of   %(t)   the difference, 

AT(t)   = ?(t+T)   -   5(t)     . (A-17) 

For values of T   which are not too large, slow changes in the function   5(t) do not affect 
the value of this difference, and it can be regarded, at least approximately, as a stationary 
random function: 

<AT(t)>~0     . (A-18) 

Random functions that possess this property are called random functions with stationary 
increments (Kolmogorov). (2)   ft is easy to show that the correlation function 

B.(t,s) =  <&   (t)A(s)> (A-19) 
A T T 
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is expressible as a linear combination of the structure functions: 

D(t,s) =<(?(t) -   «s)) >    . (A-20) 

For   B (t,s ) to depend only on the difference   (t-s)   ,   it shall suffice to have, 

D(T) =  < («(t+T) -   ?(t)) >    . (A-21) 

Roughly speaking, the value of  D( T) characterizes the intensity of those fluctuations of 
%(t)   with periods which are smaller than or comparable with  T   . 

•      A random function with stationary increments can be represented in the form, 

00 

5(t) = 5(0) + J   (1 - eltut)d0U) (A-22) 
— 00 

where   g(0)  is a random variable, and the Fourier-StieItjes amplitudes   d0(aj) obey the 
condition 

<d0(u))d0*(\)> =   6(ur\)W(<i>)d«d\     . (A-23) 

Hence, 

00 

D(t) =  2  J     da> (1 -  cos   wt)W(u>) (A-24) 

-00 

and 

W(u>)   * 0     . (A-25) 

B.    THE MICROSTRUCTURE OF TURBULENT FLOW 

For us, the most important fact about the ocean is that it is usually in a state of tur- 
bulent motion.   We shall therefore need some basic information concerning the statistical 
properties of developed turbulent flow.   The statistical theory of turbulence, was initiated 
in the papers of Friedmann & Keller.   A very important advance was achieved in 1941, 

when Komogorov, * ' Obukhov* ' and later Onsager, von Weisacker and Heisenberg 
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established the laws which characterize the basic properties of the microstructure of 
turbulent flow at very large Reynolds numbers. 

Consider an initially laminar flow of a viscous fluid.   This flow can be characterized 
by the values of the kinematic viscosity v , the characteristic velocity scale  v and the 
characteristic length   L .   The quantity   L  specifies the dimensions of the flow as a whole 
and arises from the boundary conditions of the fluid dynamics problem.   Suppose now, that 
for some reason or other, a velocity fluctuation V/i   occurs in a region of size   A of the 
basic laminar flow.   The characteristic time rA= A/v^ which corresponds to this fluctua- 

tion specifies the order of magnitude of the time required for the occurrence of the fluctua- 
tion.   The energy per unit mass of the given fluctuation is given by v^2   .   Thus, when the 
velocity fluctuation under consideration occurs, the amount of energy per unit time per 
unit mass which goes over from the initial flow to the fluctuational motion is equal in order 
of magnitude to, 

A /TA v]*/A 

On the other hand, the local velocity gradients thus developed are given by the ratio   v y A 
and therefore the energy dissipated as heat per unit mass of the fluid per unit time is of 
order of magnitude 

c = v V;2/A2 

If the velocity fluctuation which arises is to have existence of its own, it is clearly neces- 
sary that the inequality 

v'3/A > WT "/A A (B-l) 

hold, i.e., that 

ReA ■ A v1/  v > 1    . (B-2) 

Since all these calculations are accurate only to within undetermined numerical factors, it 
would be more appropriate to write instead of equation B-2. 

Re. > Re 
A cr 

Where  Re    denotes the "inner" Reynolds number corresponding to fluctuations of size  A , 

and  Re
cr is some fixed number that cannot be determined precisely.   Notice, however, 

that if 
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ReA > Recr      ' 

the direct energy dissipation for the velocity fluctuation with size A   is small compared to 
the energy it receives and thus the fluctuation can transfer almost all its energy to smaller 

perturbations.   Consequently, the quantity  VT.*VA  » which represents the energy per unit 

mass received per unit time by eddies of  nth  order from eddies of  (n-l)'th  order and 
thereupon transferred to eddies of  (n+l)th  order, is a constant for perturbations of almost 
all sizes.   In the smallest velocity perturbation with size   ^ , this energy is converted 

2       2 
into heat.   The rate of dissipation of energy into heat is of the order   c ~ \>VQ  /AQ      > 
and hence for velocity fluctuations of all scales we have 

C ~v'3/A (B-3) 
A 

for the energy transmitted down the eddies ordered chain.   It is naturally clear that if the 
condition VL/V > Re     is not met for the flow as a whole, the laminar motion is stable. 

ex 

The largest eddies which arise as a result of the instability of the basic flow are of 
course not isotropic,  since they are influenced by the special geometric properties of the 
flow.   However, these special properties no longer influence the eddies of sufficiently high 
order, and therefore are good grounds for considering the latter to be isotropic.   Then, 
since eddies with dimensions much larger than | p |    do not influence the two point function 
|v  (r +  ~p) -  v  (r)l'  this difference will depend only on isotropic eddies. 

We thus arrive naturally at the scheme of a locally isotropic random field.   The random 
field is hence uniquely characterized by the longitudal structure function D    ( p) . The form 
of the structure function can be established by using the qualitative consideration developed 
above.   In fact, consider a value of p that is large compared to the inner scale AQ of the 
turbulence and small compared with the outer scale LQ of turbulence. Then the velocity dif- 
ference at r  and r +   p is mainly due to eddies with dimension comparable to   p .   But the 
only parameter which characterizes such eddies is the energy dissipation rate   * . Thus, we 
can assert that D    ( p) is only a function of p   and   e   .   Dimensional arguments then provide 

Dy/   (p)  =  C(€p)2/3 
it 

(B-4) 

AQ   «  p « L0 

where   C  is a dimensionless constant of order unity.   This equation represents the famous 
Kolmogorov "two-thirds law."  For p « AQ , changes of velocity occur smoothly, since 

now the relative motions are laminar.   The velocity difference can therefore be expanded 
in power series of  p   , and 
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D    ( p) = a { 
(B-5) 

P«A0 

D    (p) 

FIG. 1.   GENERAL SHAPE OF THE STRUCTURE FUNCTION   D     (   o   ) 

In equation (B-4) it is assumed that   p « Ln , where   LQ  is the outer scale of the 

turbulence.   When   p   is increased, the condition  p « Ln  is violated.   Then the large 

eddies, which cannot be regarded as isotropic and homogeneous, begin to influence the 

value of   v(r+p) -  v(r) .   In this case, the structure function   D  ( p)   depends on the 

coordinates of both observation points, and no universal law can be given which describes 
the structure function for large values of   p  .   We can only state that the growth of the 
structure function slows down for p » LQ   .   Figure 1 shows the general shape of the 

longitudinal structure function    D  ( p) .   For small values of   p , the curve can be re- 

placed by a parabola with great accuracy, then the part of the curve corresponding to the 
"two-thirds" law begins, and finally, in the region of the outer scale of turbulence, the 
curve starts to saturate. 
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In many applications, it is often expedient to regard the values of  p  as not being 
bounded from above by the value of   Ln .   However, if we cannot neglect the saturation of 

the structure function, it is necessary to use interpolation formulas which approximately 
describe the behavior of the structure function for large values of    p .   For small values 
of   p , these formulas must reduce to the same values of   D ( p)  as given in equation (B-5). 
In what follows we shall use the Karman function, 

D#< p) = | <v'2 >[l - f^  a)'73 K1/3   (-£) ]     . (B-6) 

Here <v 

K 

2 
<vT    > is the mean square velocity fluctuation,   Ln the outer scale of turbulence and 

1/3 VL^" /    is the *^ order Bessel function of the second kind of imaginary argument. 

For -£.  « 1 the Karman structure function is approximately equal to 

2/3 

and hence coincides for   p « L-. with the Kolmogorov "two-thirds" law. 

C.    TURBULENT MIXING OF PASSIVE ADDITIVES 

•     Although the foregoing discussion shall prove quite essential, let us observe 
that it is really the structure of the temperature and salinity fields that ultimately deter- 
mine the characteristics of wave propagation in the free ocean, in that the wave velocity  C 
is a function of temperature, salinity and depth.   We shall now take the view that the tem- 
perature and salinity fields can be regarded as conservative, passive additives to the tur- 
bulent ocean.   If a volume of liquid is characterized by a concentration 9   of additive, then 
by saying that the additive is conservative we mean that the quantity   9  does not change when 
the volume element is shifted about in space.   By the additive being passitive is meant that 
the quantity  9   does not affect the dynamical regime of the underlying turbulence. 

As usual, we separate the value of the quantity   9  into the mean value < G > and the 
fluctuation    9r , 

9 =  <9>+   9T 

and define the following measure of the inhomogeniety of the spatial distribution of   9, 
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G = ^    JdV<9t2> (C-l) 
V 

so that   G vanishes if, and only if,    0'   vanishes identically in V   .   Using the equation of 
molecular diffusion which must be obeyed by the concentration 9   of the passive additive 
we can easily show that, 

H=     J dV £x(v<9>)2 -   D<(v0')2 >] (C-2) 
V 

where   D  represents the coefficient of molecular diffusion and  K the coefficient of turbu- 
lent diffusion, with K»D .   For clarity, we recall that if   qM  represents the mean flow of 
0  caused by molecular diffusion, 

qM = - DV < 9 > 

and, similarly, if   cu represents the density of turbulent flow of  0   , 

cjp = - Kv< 9 >    • 

Thus, the time dependence of G is governed by the delicate interplay of two distinct phys- 
ical processes, turbulent mixing and molecular diffusion.  As a result of turbulent mixing 
the inhomogeneity of the spacial distribution of 8 is increased and large local gradients 
of 8 are created.   Only after these large gradients have appeared does the process of 
molecular diffusion play a significant role by smoothing out the spatial distribution of 8 . 

The quantity, 

N = D<(v9')2> (C-3) 

represents the amount of inhomogeneity which disappears per unit time due to molecular 
diffusion and it is analogous to the energy dissipation rate   c   .   Correspondingly, the 

2 
quantity    K(v< 9 >)   represents the amount of inhomogeneity which appears per unit time 

due to the turbulence, and is similar to  v    / A   , the rate of production of the energy of 
the velocity fluctuations. 

We can carry out an even more detailed analogy between the velocity fluctuation in a 
turbulent flow and the concentration fluctuations of a passive additive   9   .   Concentration 
inhomogene it ies    9T .   with geometrical dimensions   A  appear as a result of the action of 
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velocity field perturbations with dimensions A and characteristic velocities v . The 

amount of inhomogeneities appearing per unit time due to turbulence is clearly given by, 
VA e     A    /   A   •   The rate of levelling out of the inhomogeneities    9T .    is of the order 

of     D9r K
2/ A2  .   When A 

v    e\2/A » De\2/A2 (C-4) 
A       A A 

that is, when 

Av^/D  » 1     , (C-5) 

the inhomogeneity    0T      is not dissipated by the action of molecular diffusion, but rather 

has a stable existence and can subsequently subdivide into smaller eddies.   This process 
of subdivision proceeds until inhomogeneities appear for which 

Av^/D ~ 1     . (C-6) 

These inhomogeneities are dissipated by the process of molecular diffusion at a rate equal 
to  N   . 

Thus, the amount of inhomogeneity transferred per unit time from the largest eddies 
down the chain to the smallest eddies is constant and equal to the rate   N  at which the in- 
homogeneity is dissipated.   Again, the largest inhomogeneities in the distribution of 9   are 
not isotropic.   However, the smallest inhomogeneities can be considered isotropic.    Hence, 
9(r+"p) -   9(r) , determined mainly by inhomogeneities of size   p   , can be considered 
statistically isotropic for values of  p«LQ  .   It follows, then, that   0(r) can be regarded 
as a locally isotropic random field.   Correspondingly, the structure function  D( p) can 
depend only on   p,   N,   c •   Dimensional considerations lead to, 

(C-7) 

Ao «    p « L0 

which is the, by now familiar,  "two-thirds" law for the concentration of a passive additive 
(Obukhov).(6) 
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D.    PARAMETER FLUCTUATIONS OF ACOUSTIC WAVES PROPAGATING 
IN A TURBULENT OCEAN AT SMALL WAVELENGTHS 

1.    The Wave Equation for Acoustic Propagation 

Consider a fluid medium in a state of equilibrium. We shall denote the equilibrium 
density by p^ and the equilibrium pressure by PQ . The actual density at the point r 
and at time t shall be denoted by p(r,t) . Hence, the relative change in density due 
to the passing of the acoustic wave will be given by 

p (r,t) =   p(r,t) -   PQ     . 

Similarly the difference between the actual pressure and the equilibrium value, will be 
denoted by, 

A 

p(r,t) = p(r,t) -  p0   . 

* -» 
We must now find an equation giving the dependence of p on r  and t   .   To accomplish 
this, we observe that the total pressure  p and density  p   satisfy, 

p dt ~ ~VP (Newton's second law) (D-l) 

A? + v( 0V) = 0 (continuity equation) (D-2) 

—» 
where _v   represents the velocity of the acoustic oscillations.   Discarding terms of second 
and higher orders of smallness in the small quantities   p,   p,  and  v  , one has: 

«b f= - *p <D-3> 

|! +   ^  v7  = 0     . (D-4) 

Differentiating with respect to time the continuity equation D-4 

4|+   ^v(|)=0     . (D-5) 
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We can now replace   ^v/dt   in equation D-5 from Newton's equation D-3 to obtain: 

■a-i - v2; = 0   . (D-6) 
at' 

To find one more relationship between  p and   p , we must make an assumption about the 
thermodynamic character of the acoustic process.   Specifically, we shall assume that alter- 
ations in pressure and density are so rapid that no heat energy has time to flow away from 
the compressed part of the fluid before this part is no longer compressed.   Such compressions 
are said to be adiabatic.   Evidently, the amount of heat changes by, 

* - (f )p 
dv + (f )v 

dp      ■ (I>7) 

and introducing the specific heats 

* ■ (f X •  % • (f), 
we have: 

dQ = c
P(f )p 

dV + °v (f )v 
dp   • (D_8) 

If the fluid is a perfect gas,   pV = RT  , and hence, 

dT _ dp      dV 
T   "   p         V > 

providing: 

(*T\    _ T 
VaP 'y         P 

(D-9) 

With these relations, the heat change equation becomes: 

* " T(cp T + <v f) (D'10) 
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For adiabatic processes,   dQ = 0 and hence equation D-10 provides, 

dp _ dV 
(D-ll) 

where 

= 5E 
v   " CV (D-12) 

We rewrite equation D-ll in the form, 

p-Y-p 

or, rather, 

P = C   P (D-13) 

for, 

If the fluid is a liquid, the relationship between  p and   p given in equation D-13 remains 
valid but the constant  C2  no longer relates to equilibrium values in exactly the same way. 
Differentiating twice with respect to time, equation D-13 becomes: 

dp = j_   a p 
2 2 5 

Eliminating with the aid of equation D-6, the density   p 

CT   Bt (D-14) 

which is the desired wave equation.   The constant  C  , that might in principle depend on 
r   , represent the wave velocity. 
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2.    The Rytov Method of Approximation 

To describe the propagation of an acoustic wave through a turbulent ocean, we must 
solve the wave equation 

2 N2      a2p      ft 

C0       * 

for an index of refraction N(r) that is a random function of r . Notice, that here we 
have regarded the distribution of inhomogeneities as static, neglecting their change as a 
result of heat conduction, diffusion, convection and drift. We can neglect this change if 
the propagation time is small compared to the characteristic time scale of change in the 
inhomogeneities.   Correspondingly, if the source is monocromatic, the time dependence 

of   p(r,t) is of the typical form   e ^    and the wave equation reduces to the well known 
Helmholtz equation, 

V2p + k2N2(r )p = 0 (D-15) 

where k  = -# represents the wave number of the source, 
L0 

We set 

with 

k = iu 

N(r) =  1 + n(r) 

ln(r) |« 1 

and initially attempt to solve the Helmholtz equation by the method of small perturbations. 
The idea behind this method is that due to the smallness of  n(r)   the solution   p(r)   differs 
little from the non-turbulent solution and hence, that   p(r)  can be looked for in the form of 
a power series expansion in some small parameter of order n   .   One can think of the mth 
term in the expansion as representing the non-turbulent wave scattered  m  times by the tur- 
bulent inhomogeneities of the medium, and hence of the wave actually present at the observa- 
tion point as the sum of such multiply scattered waves.   Indeed, consider the non-turbulent 
wave    Pn(r)    satisfying the homogeneous Helmholtz equation 

V2pQ(r) + k2p0(r) = 0 
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and allow the medium to develop a turbulent inhomogeneity  n  In the index of refraction at 
some arbitrary point    r*n .   In the presence of   Pn(r)   the inhomogeneity at  rn becomes 

the source of a secondary wave   p-,(r)   with source strength   -2k n(r)pQ(r)   .   The sec- 

ondary wave coexists with Pn(r) and satisfies the nonhomogeneous Helmholtz equation, 

72p1(r) + k2
Pl(r) = -  2k2n(r)pQ(r)    . 

Consequently, 

Pl(?) = J d?Q G(?|?0) [-2k2n(?0)p0(r0)] 

where the Green's function G(r |rQ)   satisfies 

v2G(r|r0) + k2G(r|rQ) = -   6(r-rQ) 

and represents the contribution to the wave at r     due to a point source of unit 
strength at   r    .   The actual field measured at r   is therefore given by 

p(r) = p0(r) + j d?Q G(?|?0) [-2k2n(r0)p0(?0)]      . 

Let now another inhomogeneity develop at   r,   .   In the presence of  p.. (r) , it will become 

the source of a secondary wave of strength -2k n(r )p-, (r) and hence, 

p2(r) =  J drx G(?\?±) [-2k2n(r1)p1(r1)] 

By repeating the argument ad infinitum, it is not difficult to show that the wave actually 
measured at   r can be written as a multiple scattering expansion: 

P(r) = p0(r) +    2,    Pm
(?) 

m=l 

where 

p (?) =   f dr    .  G(rlr    .) f"-2k2n(?    . )p    ,(?■,>]    . *mv J       m-1 •  m-1    L m-l'Mn-l    m-±  j 
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The iterative nature of this equation indicates that the mth term in the expansion is of order 

n     .   Therefore, for sufficiently small  n  one might hope that higher terms in the multiple 
scattering expansion can be neglected with impunity.   Since, however, one expects the fluc- 
tuations away from the nonturbulent value to grow with the range, a straightforward applica- 
tion of the method of small perturbations shall not suffice for all but very short ranges. 
Rather, (?»8) we write equation D-15 as, 

and notice that it is equivalent to, 

v2 log p + (v log p)2 + k2N2 = 0     . (D-16) 

We set 

t s log p 

so that 

t = log A + iS 

where  A   represents the amplitude of p,   S the phase thereof, and have, 

V2* +  (V*)2 + kV =  0     . (D-17) 

We are now ready to apply the method of small perturbations to this modified differential 
equation by taking, to first order, 

♦ =  *o +  *1 (D'18> 

where the zeroth approximation 

♦o = l09 A0 + ±S0 

satisfies: 

Ac) +  (7*0)2 +  ^ =  ° (D"19) 
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and where   i|u   is the once scattered wave.   Then, using equations D-17, 18, 19 

v2^ + 7^(27^ + 7^) + 2k2n + k2n2 = 0 (D"20> 

where 

♦l = log7T + ^"V    ' 

2 2 
In equation D-20, we omit  k n    which is of second order of smallness and further assume 
that 

W*ll«W*bl    • (D-
21

> 

Hence, the equation to be solved becomes: 

v2^ + 2v*0  •  vif1 + 2k2n    = 0 (D-22) 

Since, 

condition D-21 describing the limits of validity of our approximation now reads: 

Xlvf^l« 2TT (D-23) 

and expresses the smallness of the change of   ^ over distances of the order of a wave 

length.   This inequality implies the smallness of the relative amplitude change over a 
wave length 

\|v log Y-\« 2TT (D-24) 

and the smallness of the change of the phase fluctuation over X , 

X|v(S-S0)|« 2TT    . (D-25) 
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The amplitude condition D-24 is always fulfilled in a weakly inhomogeneous medium, 
|n |« 1    ,   The phase condition D-25 implies that the angle of inclination of the ray to 
the initial direction is small.   In fact, if 

SQ = kX 

we have, 

&    ■     ay     ay    '     a«     &z 

for 

s± , s - s0 

and hence, using equation D-25, 

$rl~*"5     if l«k  >     l||l«k   • 

Since large scale inhomogeneities,   X «f< AQ , produce sharply directed forward scatter- 
ing, the phase condition D-25 can be met if we assume: 

-£    « 1     . 

3.    The Method of Spectral Expansions 

We now consider the problem of fluctuations of a monocromatic wave, confining our- 
selves to the case where the wave length   X  is small compared to the inner scale of tur- 
bulence   AQ  .   In this case, the angle of scattering of the wave by refractive index 
inhomogeneities is of order no greater than  X/An and is thus small.   Therefore, the value 
of    ^-.(r) can only be appreciably affected by the inhomogeneities included in a cone with 
vertex at the observation point, with axis directed towards the wave source and with angular 
aperture    X/ A Q .   Hence inhomogeneities lying on the opposite side of the source from the 
observation point never contribute to scattering and we shall therefore take n(r) = 0 in 
that region.   To simplify the calculation we shall furthermore assume that the wave is plane. 
We then locate the origin of coordinates on the boundary of the region occupied by the refrac- 
tive index inhomogeneities and direct the x-axis along the direction of propagation of the 
incident wave. 
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(y,z) 

ß 
V 

Ö X* 

n(r) = 0 n(r) i 0 

Then, 

FIG. 2.   THE DISTRIBUTION OF REFRACTIVE INDEX INHOMOGENEITIES 

Vf0 =  (ik,   0,   0) 

and the differential equation D-22 reduces to, 

a* 9 ö*l 2 
V  ^ + 2ik -—^ +■ 2k n = 0     . 

If    \« An  » one can show that it shall suffice to solve the simpler equation, 

2 ö*l 2 v A + 2i 15T + 2k n =  0 (D-26) 

where 

The method of spectral expansion consists in taking 

n(r) = J e **** dZ(JT)    . (D-27) 
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and searching for the solution in the form, 

. -♦ —» 

Using the differential equation D-26, 

j eix-r  (-K2
X -  2kxJ    dcp(K)+ 2k2  JeiK,r dZ(J?) = 0 

and therefore, 

d*(H) = -Ö    dZ (?)     . (D-29) 
nV2k + H    -   iC 

JL // 

Notice the small imaginary part that has been added to the denominator to render the expres- 
2 

sion meaningful at H    = -  H /2k .   Before proceeding any further, we must first explicitly 
// i 

incorporate the boundary condition 

n(r) = 0     ,    X  < 0 

into the Fourier-StieItjes transform D-27 of the refractive index field.   We therefore take, 

n(r) =   9(X)Tl(r) 

with the step function 0(X)  defined by 

1     ,     X  > 0 

0     ,     X  < 0 
e(x) H 

and invert the Fourier-Stie It jes transformation D-27 to have, 

dZ(x) = - -^ dH//    Jdv(a),  HX)     [ dXei(u)~*„ >x 

0 
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where   dv(n)   is the Fourier Stieltjes transform of   T](r)  . 

Using equation D-30 we can now formally express the solution ^(r) in terms of the 
known Fourier-Stieltjes transform of 7](r) • Thus, we can express the transform of the 
random field of logorithmic amplitude fluctuations, 

Re^(r) = J e1*** da(*) 

in terms of   dv(n) using the obvious relation 

da(n) = \ [dco(H) + dcp^(-K)] 

and obtain 

da(?) =       k  d>t       L((0,? ) [" 1     JdX   .«•-*>* 
4TT      "     J x    L    *V2k + H    -  if    ^ 

+ -^ 1    [dXei(u)-\)X~ (D-31) 
</2k - x  + ie ; J 

L // U 

We can also express the Fourier-Stieltjes transform of the random field of phase 
fluctuations 

Im^(r) = J e1^ da(?) 

in terms of d M (x) using, 

da(n)   = 2j [_dcp(H) - dcp*(-H)J    . 
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We get, 

da(*)= -  4^1 dH     fdv(a.,H,)r   -5 1    [dXei(u)-\)X 

'  J X    L    </2k + K    .  i€ J 

V2* - \ + *«     0 

Correspondingly, we can now calculate the correlation function of logorithmic amplitude 
fluctuations in terms of the known correlation function of the refractive index field, or the 
Fourier transform thereof.   Indeed, 

BA(p)  H <Re^1(r+-J)Re^H1(r)>  = 

= J e1*^ e"1*^ < da(K)da*(H<)> 

and recognizing that 

<da(K)da*(K,)>=   öCK-KM  $(K ,K
T
 ;H  )d* dHrdn dnT 

x
     -1       A     "     //     ±       //     //     i     i 

we have, 

™ in   p     in (r +o ) -iKTr ^ 
B-Cp) =      dK dKrdK    e    L L e "    * e      "  *   *.(K  ,K

T
;K)     .     (D-33) 

— CO 

The spectal density function   $A^*VH*',K±^    ls easilv connected to the spectral density 
function of the refractive index field via its definition and equation D-31, 

k2   " 

"     " (4TT)    J • 

00 

—5 i-7>    [ dXdX'e 
L (Kf/2k+K -ic)(Hf/2k+KT+ic) n 

'   e 
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(x*/2k+K   -iC)(H^/2k-H*-ie)   , 
J. // 1 N U 

P i(u)-H   )X -i(a)-KT)X 
J dXdXTe "    e 

, " i(u)-H  )X    -i(«-Hf)X' 
+ —* i^    [dXdX'e *      e "        (D-34) 

(H,/2k-K +ie)(H  /2k+Hf+ie)  n 

. " ±(ci)-K   )X    -i(u,-HT)XT
n 

+ —* ±-*       dXdXTe "       e 
(H /2k-n +ic)(H /2k-*T-i€) n 

where, 

<dv(a),H   )dV"(u)t,H^)> =   6(a)-u)T ) 6 (HX-H^)   $R (a) ,Hi)da)dU) 'dn^d*^     . 

We are now in a position to evaluate the   n   ,KT
     integrals in equation D-33.   To do so, //       // 

define: 

7 ion    -i0HT 

F (a,ß;n  )  ^     d* dn'  e      "e        "  §.(*  ,H
T
;H  )    . 

** X.J//// A       *       *       1 

Replacing $..   from equation D-34, interchanging the  (u) ,X,X,f) integrals with the 

(H^ >K
!
 )   integration, and employing repeatedly the spectral representation of the step 

function, 

-l(l)t -ire    w 

fl(t) =  lim      ^        du) e    . . m 
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we obtain: 

a        ß 
FA(a,ß;Ki) = \ k2  J dX  J dXT   P^X-X1;»^ ) * (D-35) 

o      b 

where, 

[cos   (-^ (^ocfX-X1)) -  cos   (^ (&+-a-X-Xf ))] 

Fn(X.X»;?x) BJd„eiw(X"X \ („;?x)    . 
-00 

In equation D-35, the upper limit of both integrals can be set equal to 

v = Min  (a,   B)     . 

In fact, because of the directional characters of the scattering, the waves scattered by the 
layer bounded by the planes X = Min ( a > 0) and X = Max  (a > P) are incident on the re- 
ceiver at   Max  ( a > P^ but not on the receiver at    Min  (a > ß) •   Therefore, these waves 
can be neglected in the calculation of the correlation function. 

Introducing, 

?  = X-XT     ; 7i = X+XT 

FA(ot,ß;  KX) becomes: 
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_l-2 
FA(a,ß;Kx) = |k    J   d? F^fei^) (y-0 * 

K2 K2 

[cos   (—^ (B- a- ?)) + cos  (-^ (0- a+?))] 

(D-36) 

v 
|k2 J   ä^Fn(?;K±)^ 

0 X 
1 

[sin  (-^ (0+a- o) -  sin  (-^ (p+ a-2 y+ ?))]    . 

In general, the function    F  (? ; K   ) falls off very rapidly to zero for     H   ?  ^ 1   •   There- 

fore, the important contribution to the values of the integrals occurs for   £   <, —     .In the 
2m Hi 

l H,S     K, region      5 £—     , we have      .1     ^ -.i:    .   We assumed above that the wavelength  X   is 
Ki k k 1 

much less than the inner scale of turbulence   A n .   But A n ~ -— , where   K       is the 
0 °      Kim m 

largest wave number for which   F  ( ^ ; K ( ) still differs from zero.   Therefore we have: 

x   <nr « 1    . 

Thus,   -7yr-  « 1   in the important region of integration on   C   . 

Furthermore, we shall be interested in the correlation function of   Re^ (r)   only for 
values of the argument which are small compared to the range   y  .   This means that in 

equation D-36 we consider only values of  H    which satisfy the condition   —  < v    .   Since 
1 L H

-L 
%  <. — in the important region of integration, within this region we have   % « y    . 
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Taking all these simplifications into account, we obtain: 

FA(a, p; Kx) S k2 fv COS   (-JE  (B" a)) + "4 Sin   ("2E  (8+a- 2y)) 

-4 sin (-^(3+a))]    J<J5Fn(?5Hx) 

Recognizing that, 

Y 

f*«Fa(CjSx>»Jd«P||(BSx)- TT*n (0;5) 

we finally have: 

FA(a , ß ; KX) = k
2n Y *n(0;K±) [cos (-^ ( &- a)) 

+ -^- sin (-^ (ß+a-2Y)) - -£- sin (-^ (P+a))] 
KXY K±Y 

(D-37) 

Now, in accordance with equation D-33, the correlation function of the logarithmic ampli- 
tude field is given by, 

. -♦ -• 
IX, p 

BA(p) -JdKxe'   iAFÄ(VP,»*A) 

Choosing one of the two   K    axis along    p    , we can perform the angular integration to 
have: 
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BArp)  -    2n J HxdHxJ0(KiPi) W W**' 

We are therefore interested in, 

a ■ r + p ; 8 - r 

and with the notation of figure 3 we thus have 

8- a =   p sin  Q    ; 8+ a = 2L 

Px =   p cos 

Y = L • «x   p sin A 

FIG. 3.   THE GEOMETRY OF THE CORRELATION FUNCTION MEASUREMENT 
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Then, 

- 2  2 
BA( p) =  2TTV  * 

I (L -  2   P sin  e^   [ *j.d*±
Jo(H±p cos   9^ cos   ("5E   p sin  e)  $r/°'K±^ 

°°                                          sin  (-^   p sin  e)) 
+ k   I  H^dH^JgCK   p cos   0)  2  V°**x> (D-38) 

- k  ^     *j.dvVHjLP cos   9) 
sin (-£ L) 

K, 
^°*«x>] 

Notice that   B,("p)   does depend on the range   L , thus indicating that the field    Re f_ (r) 

is not homogeneous.   This circumstance reflects the nonhomogeneous choice of "boundaries" 
implicit in the assumption of forward scattering and is not characteristic of the field itself. 

4.    PHENOMENOLOGICAL MODEL 

We are now ready to choose  some reasonable model for the Fourier transform    $n(?0 

of the correlation function characterizing the refractive index inhomogeneities.   A natural 
candidate for the structure function of a turbulent field has already been suggested in chap- 
ter B.   Here, however, with the field assumed homogeneous and isotropic rather than 
locally so, the structure function can be eliminated in favor of the correlation function 

B( p) = \ [D(~) -  D(p)]    . 

-31- 



Using the Karman proposal, we therefore have, 

2/3 -       ,     Nl/3 ,     v 

V")=TW3)<n   >%)        Kl/3   (ij) 

and correspondingly, 

, ,-N Hll/6) T3   _2, 1 

In what follows, we shall find it convenient to write 

2 

• 0?) =    lim        ^(11/6)      I^<n2> e"Y
9*1l/r (D-39) 

Y~0+    n3/2r(l/3)    ° (1+K
2

L
2
)
11/6 

and postpone the taking of the limit to the end of our calculation.   With this choice for 
$ fv )     , the correlation function for the logarithmic amplitude becomes: 
rr 

BArp) =  2n^ <n2>l^    I$0>    Jta     [JvV*   p.in 9 V *l] (I>40) 

where 
11 

Al  3   1   KidKiJ0^Hj.p C0S   6^ C0S   (~2E   p Sin  9) 

■V«i 

(l^)^6 

T sin(xL)       e"YK' 
A,   =   \   KdH  Jn(H, p cos   8)  If '  ~ 2       J   ^X^O^J." ww°   oy 2 ,,A  2.2YL1/6 

0 Kx (1+%Lo) 

K2 2 

T Sin  ("2TT   p sin  6) e"YKj- 
A3  H      »AJ^p cos   fl)  j  M4. 2.2,11/6 
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We begin the evaluation of A.   recognizing that 

Ax = Re I(z) 

for 

(z)   ^ J  KjLdK±e 

0 <1+*JLV 

and where, 

z  =  y-i a   ; Rez  > 0 

a=«k   p sin 

p =  p cos  9 

Changing variables, we can write, 

I(z)=   1      dxe —-°J 
2^0 (l+x)11'6 

and using the power series expansion 

•2\n xn 
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we have: 

2L0 n=0  (n!)      4L0      0 

(D-41) 

«■»■A I ^(£)n*<^^i4) 
2L0 n=0 4L0 L0 

where    Y (a | c  | x)    represents the confluent hypergeometric function of Tricomi 
satisfying the integral representation, 

r ,**. ^-xt _a-l ^.^xC-a-l 

i« 

Y(a|c|x) = -i-     r dt 
Ha)    J 

e ~ tr * (l+ty 

Rea > 0    ,        Rex  > 0     . 

If     \— 1 < < 1   , we can use the behavior near the origin for the Tricomi function, 
Lo 

Yali,2).I(I/^ + r(-5/6)(A)5/6 

i6ij2'   nii/6) \2
0' 

n *1 
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to obtain, 

«•> - ^ m ^ «-*« (-^f6♦ 

2I*    L0 r£l    <n!)2  V4Zy 

Employing the standard integral representation of the Euler gamma function 

CO 

rCn-5/6) =  j dte_t tn"11/6     , (n-5/6)  > 0 

I(z)      i    Hl^ + _^r(-5/6)(^)5/6 

i   (z \5/6 r a. -t .-11/6   V   (-l)n f e2t\n 

2L
0    L0 0 n=l ln,; 

and recognizing that 

00 

Z,   ^5 \-JT)   ~ Jo L
2Hn^ J " X 
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it follows 

2L0 2L0 L0 

Jo 0 2L0     ^ 

Consider now, 

•0 

and use, 

a2^ 

*W4tf]-»--*   T  «^ 
to have: 

<-# 

■>(-&--   J«   J *•-' <-8/6 -^(-^l 

Notice, however, that 

j •.- ,-W ^(4)"] . mgi .-*« | , („,„„,»,.) 
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(9) 
where    $(a Ic |x)     represent the confluent hypergeometric function of Kummer.       Hence, 

I " r(2) 
0 

02/4z 

K^-fWr1   J      axe-|(u/6|2|x) 

and upon using 

we find, 

£ [."*  . (H/6|l|x)]=-- fffffffo e"X  I dl/6|2|x) 

2 2 
D(~fe) = r("5/6) [e_e /4~  * (H/6ll|e2/4z) -l] 

Thus: 

I(z) 
1    T(5/6) SJ r$& *^ «-s/e,^)V6 .-*'- . (n/sm^, 

or, 

(D-42) 

where use has been made of the Kummer transformation, 

$(a|c|x) = ex  $ (c-a|c|-x)    . 

|4,| «1 
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The real part of equation D-42 is then the value of the A     integral we have been trying 
to evaluate. 

Consider next, 

oo 2 2 

Notice that G( v , a ) has been so chosen as to provide 

A2 = G(Y, L/K)     ; A3 = G(Y,  o/2k sin  6) 

thus reducing both A     and A^  to an evaluation of G( y , a ).   With 

•   /      2. 1 sm(ax  ) « 2 
 2  =  a  I d xcos  (Xan^) 

Ki 0 

we have: 

J       7 -(v-ioX)K^     J0
(PK

X
) 

G(Y,a)=2jdXJ    *xd%e ...2 .2.11/6 
0       0 C    HJ.   o; 

1       " -(Y+iaX)^ J0
(eKx} 

+ * J dX J  KxdKLe 2  L2)11/6 

0        0 C       J.    0; 
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and hence; 

G( , <x)= f     [ d\ [iCy-iaX) + Ky+iaX) ] 

y+ia 

G(Y,a) = Tjj J      dz I(z) 
y-i a 

G(v,a) = Im K(z) 

where, 

X(z)   = J dz I(z)     . 

Using the expression for   I(z)   obtained in equation D-42 

*<•> -1 W£h fe) *^ n-w, (-V) 
5/6 

L0 ^ 4L5 

jdz(_^)5/6e-ß2/^$(11/6,llB2/4z) 
3 

Denoting, 

D(z) . Jdz (_i|)5/6 e-
ß2/4z  * (ll/6|l|B2/4z) 

0 
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it follows that, 

D(z) = - B2 

T l <4) {4)'"* <-*/lz• ("/.UIA«.) 

and using 

3c [5 x-ll/6 e-x * (17/6|l|x)] = H-5/6)    .-17/6   ,-x . ,,, ,„., ,   , 
r(-ll/6) X e      *(H/6|l|x) 

we obtain: 

<**> " -4 !»■ (4fl/6 ^ • CWi|M*/«   . 

Hence, 

(D-43) 

Lo 

Collecting the various partial results developed above, we find: 
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V 0) - 2^ <n2> k3L3 TX11/6)      ^    . 

^Im K(Y+i  ^| sin  9) - ^| sin 9 Re I(Y+i^| sin  9) 

-Im K(Y+iK) + | Re Kv+i-jk sin  9)] 

4n Lj      . 
p << X sin  9       5 /^  « L0       ' 

For normalization purposes,  let us consider: 

BA(0) . ^ <n*> k3L3 mVS) r, I(Y)_ ^ K(Y+I 

Y co- 

upon taking  ß = 0  In both  I(z)  and K(z)  we obtain: 

IX-5/6)   ^ 
J0 '"0 

Kv)-^fiig{,*^n-5/s)^)! 

K (v+i iE) - -5 (ii/6)     _T      ? n-ii/6) ^ y  ) 
T) 0 

having employed 

$ (a|c|0) = 1    . 
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Therefore, 

BA(0) - 2^ < n2>k3L^ 1^ 25/6 r(-ll/6) sin  §£)    * 

k"11/5 (2LJ)-11/6  L11/6 

and Introducing the normalized correlation function 

we shall have: 

(D-44) 

V P)  -  5 
x-11/6 

lim        * 
v- 0+ 

I Im K(v+i 2I   sin  9) "  2I Sin  9 Re I(v+i'5l sin  8) 

-Im K(Y+i£) + £ Re I(Y+i ■&   sin  9)] 

(D-45) 

4A* 
p <<: Xsin  6       "' /Tl << LC 

for 

6 . (2l£) [25/6 n-11/6) sin  (g TT)] 
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The result of equation D-44 is quite important in itself, because 

BA(C?) = o* 

where   a-    stands for the variance of the logorithmic amplitude distribution.   In fact, we 
find: 

aÄ ~ < n > k        L 

2 
The mean square refractive index fluctuation   < n  >   can be eliminated in favor of the 

2 
experimentally measurable   C     that appears in the Kolmogorov "two-thirds" law, 

V -' ■ < »2/3 • 

Indeed, using the power series expansion of the   K   /-r(x) Bessel function and retaining 

only the first two terms for   p/Ln  « 1 , the Karman structure function becomes: 

Upon comparison with the Kolmogorov equation, 

2    _ n2 1X4/3)    (91   s2/3 

<n >_ Cn 2r(2/3) (2V 

and therefore: 

in perfect agreement with the result of an earlier analysis performed by Tatarski. 

We shall now make use of the asymptotic behavior of the Kummer function, 
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with 

.(a|c|x)-?g£lT(ei«%)«   I     (a)nlrC+1)n (-X)-" 
n=0 

+ ffi ** xa"C    I  m x 

n=0 

,   v •   s        T(a+n) _  „ , (a)0= l     ; (a)n = -^ir    ,     n *1 

c = 1    if    Im x  > 0     , € = -1    if    Im x  < 0       ; 

-  TT < arg x  < TT 

as well as of its behavior near the origin to extract from equation D-45 information 
concerning the normalized correlation function    bn( p)   .   One can thus show, after 

A -i 
some lengthy algebra that as long as   9  does not exceed tan      (/L/\ ) , 

-44- 



/ \5/6 

b Cp) - 1 -  H/6  \& sin  e) 

for p « X cos   e 

11/6 /k N5/6 5/3 

A 2b/^r(ll/6) sin  (11/12 n)    VL J 

for     X ü an  e «  o ^   ^ (D"46) ror     X    cos   e <<:  p ^ HoTl 

h ,-*            27/3 r2(7/6   L\7/6,        .      or7/3 
b.( p) 5 "  ( £   )        ( P COS    9) 
A      lir( 11/6)r (-11/6) sin (11/12 TT) X

* ' 

/XL for p » 
cos 9 

It follows from equation D-46 that the normalized correlation function    bft( p) 

starts off at 1, decreases as one minus the five-thirds power of the normalized distance 
p cos 9 //XL   until it crosses the abscisa somewhere around   /xL/cos   Q , and then 
approaches zero asymptotically from below. 

An exact representation of the correlation function    bft( p)   is given in figure 4, for 

e   =   io° . 

The correlation length of the logorithmic amplitude distribution is thus of order 

/XL 
pcorr ~ cos  8 
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For   8=0, this result is in perfect agreement with the Tatarski calculation in the 
/XL « LQ regime, and is therefore the natural generalization thereof away from trans- 
versal correlation.   As 9   nears rr/2  the result of equation D-45 is no longer accurate. 
In fact, for   9 =  eQ  the solution of 

4n L0       _    /XL 
\ sin  9      cos   9 

2 2 
the correlation length is of order 4TT LQ/X sin  8 and hence values of p > 4TT LQ/X sin  9 

become relevant.   It can be argued, however, that for values of   9  ^ 9Q  the correlation 
length becomes 

pcorr ~ X sin 8       ' (D-47) 

Indeed, introducing 

Xp sin  9 [l s —2~ 
4"L0 

we can still use equation D-45 to describe the behavior of the normalized correlation func- 
tion for  u « 1   .   When    p. » 1 t we can return to equation D-41 and use the asymptotic 
behavior of the Tricomi function, 

il            „    (a)    (a-c+OA /   i   i   \          V    /  n \H          n v             n      -a-n 
Y (a(c|x)  -     2,    ("1)       Rl     X 

n=0 

3 3 - -^ TT   < arg x  < -^ TT 

to have: 

I(z) - 25 e   p / 

-46- 



THETfl = 10.0 

b/e) 

FIG. 4:   THE NORMALIZED AMPLITUDE CORRELATION FUNCTION 



Correspondingly, 

K(z)  - - Ei  (-02/4z) 

providing for the correlation function a highly oscillatory behavior in the \i » 1     region. 
The change of regime manifested by   b ("p)    as  |i goes through 1, indicates that the corre- 

A 
lation length corresponds to values of u near 1 and hence that equation D-47 holds.   To 
obtain the correct shape of the correlation function   b,( p)   as  u passes 1 would require 
summing up the series in equation D-41 without any approximation on the Tricomi functions 

Y (n+l|n+l/6 |z/LQ) .   We shall restrain from attempting to do so here. 

For   8 =  TT /2 our result corresponds exactly to the one obtained in 1961 by Chernov. 

5.    COMPARISON WITH EXPERIMENTAL DATA 

The value of the variance, 

al =  .31 C* k7/6 L11/6    ;     /XÜ « L0     , 

and the correlation length 

/XL 

^corr 

cö^e   '   ° * e < eo 

;  /xE « LQ 

4TTL
0 

{    TTiH 8 '    90 < 8 " v/2 

for the logarithmic amplitude fluctuation field of a monocromatic sound plane wave propagating 
in a turbulent ocean, are our main result.   It is to be observed that they depend explicitly 
on the wave number  k  of the propagating sound and on the distance   L  between the source 

2 
and the receiver, and implicitly through   C     on the environmental conditions prevailing 
in the region of propagation. 

We shall conclude this analysis by providing some information concerning the compari- 
son of our result at  9 = 0  with adequately taken experimental data.   The experiments we 
have in mind, were conducted in 1961, and then again in 1962, 1964, from two scientific 
research vessels belonging to the Academy of Sciences of the USSR, the Sergei Vavilov and 
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(3) 
the Peter Lebedeev.        Periodically repeated pulsed signals with a tone frequency carrier 
f were recorded at a definite distance from the transmitter.   The depth  H of the trans- 
mitter and receiver, the distance   L  between them, the pulse duration A T , and their 
period of repetition were chosen so as to permit time separation of the direct and 
surface-reflected signals.   As a rule, simultaneously with the recording of the acoustic 
signals, the fluctuations of the velocity of sound were measured at the depth of the receiver. 
The receiver was designed to operate in conjunction with a device permitting the fluctua- 
tions of the refractive index to be measured to 10"6 by the microphasometric method.   This 
simultaneous recording procedure provided the opportunity of analyzing the results to in- 
clude the variation of the statistical characteristics of the refractive index fluctuations in 
the course of the experiment.   The statistical processing of the recorded fluctuations of the 
index of refraction and fluctuations of the acoustic pressure level of the direct pulses con- 
sisted in calculating the time structure functions   D( T)   according to, 

D(T) = 

rN-m 2 

I L-zi) 
i=l 

/   (N-m) 

where   z    is the value of the ith sampling of the refractive index or logarithmic amplitude, 

N   is the total numbers of samplings in a recorded segment of duration   T ,   AT = T/N -   1 
is the partition subinterval, and  m = 1, 2,  ...   is the number of partition subintervals 
AT   in the interval   T   .   The partition subinterval   AT  for the recordings of the acoustic 
pulses was equal to their period of repetition  AT ; for the refraction fluctuation record- 
ings it was equal to 0.05 second.   The number  N was between the limits 600 and 1, 200. 

The transition from the time scale   T   to the space scale  o    was performed accord- 
ing to the formula, 

0 = VT    . 

The structure functions of the refractive Index fluctuations   D (VT)  
and tne amplitude 

fluctuations   D.(VT) were used to ascertain the correlation radii and mean-square fluc- 

tuations of the refractive index and of the logorithmlc amplitude.   The principal character- 
istics of the experiments and the results of their processing are shown in table 1. 

2 
Figure 5 shows the normalized structure functions D ( p)/2<n   > for fluctuations of 

the refractive index for the recordings obtained in the 1962 tests.   It indicates that for 
values of o < Ln these functions on the average fairly well satisfy the "two-thirds" law of 

Komogorov and Obukhov.   In the 1964 experiments direct measurement of the inhomogene- 
ities were not made, but there existed good evidence that the "two-thirds" law was valid 
up to scales of at least 60 miles. 
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TABLE 1:   EXPERIMENTAL CHARACTERISTICS AND RESULTS 

a 

* 
o • 

CJ o 
TIME AND PLACE N 

W 
E 

0) e   < CM 
o B iH 

OF ■H n iH n X . e 
EXPERIME NTT 2 

> <1 

6 

S X 

fee 
i 

#■■ 
S 

200 3.5 9.5 .36 13.7 .63 
1962 May, Northwest Atlantic 40 25 i .4 665 6.3 26.4 .46 25.4 .28 

900 7.4 18.7 .11 29.0 .11 
1150 8.3 14.1 1.16 4.7 1.94 

1962 June, Northeast Atlantic 35 25 i .4 910 7.5 7.1 1.58 2.7 1.98 
600 6.0 10.0 2.22 5.4 2.66 
480 5.4 15.8 .80 11.0 .80 

1962 July, Sea of Norway 20 25 i .4 240 3.8 17.3 .76 17.8 .76 
160 3.1 17.3 .60 25.2 .61 

1490 23.6 2.0 27.4 
1964 torch, Sargasso Sea 250 4 10 2.0 4100 

8730 
250 
700 

39.0 
57.0 
11.0 
18.5 

9.6 
17.0 
2.2 
5.8 

38.2 
54.1 
12.1 
16.9 

1964 May, Sea of Norway 150 3 10 1.0 1260 
2850 
5220 

25.0 
37.8 
51.0 

9.0 
17.8 
25.0 

31.6 
37.8 
53.0 
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FIG. 5: THE TEMPERATURE STRUCTURE FUNCTION 



The normalized structure functions V p)/2oA obtained from processing of the 

recordings of a sequence of pulses at various distances are constructed as a function of 
p//\L   in figure 6.   Notice that the curves for the structure functions roughly coincide 
at all distances and intersect the saturation level between values of the normalized dis- 
tance from   .9 to  1.3.   This indicates that the correlation distance is of order    /\L 
when    /\L « J0 

DA/2(7A A      A 

p/VXL 

FIG. 6:  THE AMPLITUDE STRUCTURE FUNCTION 

Finally the dependence of a,/. 31 C K ' p on L is depicted in figure 7. The 

line drawn through the experimental points by the method of the least squares almost per- 

fectly coincides with the theoretical dependence of L 

The foregoing discussion concerning the results of experiments on the fluctuations of 
the sound level in an ocean medium containing inhomogeneities of the velocity of sound 
shows that a random field of the refactive index may be described to a satisfactory approxi- 
mation by means of structure functions satisfying the Komogorov-Obukhov "two-thirds" law 
with external inhomogeneity scales   Ln   ranging from several tens of centimeters to several 

tens of meters, and the experimental dependences of the mean-square and radius of corre- 
lation of the acoustic pressure level fluctuations on the distance are in good agreement with 
the theoretical predictions. 
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